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1. Introduction

Active noise control (ANC) based on the principle of superposition has become an important
and interesting topic of much research in recent years. In ANC system, a secondary source is
introduced to generate anti-noise of equal amplitude and opposite phase with the primary noise.
The acoustical and electrical control basis of ANC system is introduced in Ref. [1]. According to
the acoustic principle, active attenuation is a more attractive mean to achieve larger amount of
noise reduction in a small zone or in a duct, particularly at low frequencies. Various adaptive
algorithms are developed, and many commercial applications of ANC system are introduced in
Ref. [2]. A popular adaptive filtering algorithm is the filter-x least mean square (FXLMS)
algorithm for finite impulse response (FIR) filter [1,2], because it is simple and has relatively low
computational load. The development of improved digital signal processing (DSP) hardware
allows more sophisticated algorithms to be implemented in real time to improve the system
performance [3]. To design a practical ANC system, two important problems should be
considered. Firstly, the secondary path may be time variable. If the phase difference for a
particular frequency between the actual and the estimated model is more than 90�, the ANC
system can become unstable [2]. Secondly, the secondary path and primary path may exhibit non-
linear behaviors. Various techniques can be utilized to solve the first problem. Online modelling
control techniques [2,4,5], robust control technique [6], and without modeling control technique
[7] have been introduced to design the ANC system with time-varying secondary path. Neural
network (NN) has been introduced to control non-linear noise, and multilayer perceptron neural
networks were used to control non-linear plants [8]. The multilayer perceptron neural network is a
global approximate neural network, and the major problem in the NN-based ANC is its relatively
slow learning (or convergence) process. To solve the problem mentioned above, several strategies
can be adopted. One is the fast NN learning algorithm utilized in the control system [9], and the
other is the NN enhanced controller used in the ANC system [10]. In addition, the local
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approximate neural network, radial basis function (RBF) networks [11], can be introduced to
improve the performance of the convergence. Recently, the fuzzy neural networks [12] and fuzzy
modeling technique [13] are used as a non-linear filter. In [13], both acoustic model of the primary
path and inverse model of the secondary path are identified using the Takagi-Sugeno (TS) model,
and the experimental results have been obtained for a multi-channel ANC system. Since an open-
loop strategy is utilized in the ANC system, the performance of the ANC system will be degraded
by disturbances and model mismatches. The NN and RBF networks can be trained by numerical
data only, but the fuzzy neural network can handle both numerical information and linguistic
information. Since the fuzzy neural network is a local approximate model, the adaptive process
can be accelerated. This paper will focus on the active noise control problem for non-linear
response of an unknown primary acoustic path. The primary path exhibits non-linear distortion
when the primary noise propagating in a duct has high sound pressure [14]. A feedforward fuzzy
neural network controller is proposed, where the model of fuzzy neural network is simplified to
meet the characteristic of an ANC system. The stability of the closed loop system is proven via the
discrete Lyapunov function. Some digital simulations with non-linear primary noise path are
given, and the results show that the simplified fuzzy neural controller is more effective compared
to the classical NN controller.

2. System description

An ANC system with non-linear primary noise path is shown in Fig. 1. The secondary path is
modeled with a FIR filter. The ANC system can be described by the following equation:

eðk þ 1Þ ¼ dðk þ 1Þ þ yðk þ 1Þ ¼ gðX ðkÞÞ þ
Xm

j¼0

hðjÞuðk � jÞ; ð1Þ

where X ðkÞ ¼ ½xðkÞxðk � 1Þyxðk � nÞ�T is the reference signal vector, uðkÞ is the output of non-
linear controller, and hðjÞðj ¼ 0; 1ymÞ is the FIR filter coefficients of the secondary path model. d
is the disturbance signal received at the error microphone, and gð:Þ is a smoothing non-linear
function. The output of the feedforward non-linear controller can be expressed as

uðkÞ ¼ f ðX ðkÞ;W Þ; ð2Þ
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Fig. 1. Block diagram of a non-linear control system.
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where f ð:Þ is a smoothing non-linear function, and W is a parameter vector. The neural network is
utilized as the non-linear controller, where W is the weights vector. The performance index can be
described as

Jðk þ 1Þ ¼ 1
2
e2ðk þ 1Þ ¼ 1

2
½yðk þ 1Þ þ dðk þ 1Þ�2: ð3Þ

The unknown parameters can be adjusted according to the gradient descent method

W ðk þ 1Þ ¼ W ðkÞ � m
@Jðk þ 1Þ
@W ðkÞ

¼ W ðkÞ � meðk þ 1Þ
@yðk þ 1Þ
@W ðkÞ

; ð4Þ

where m is the learning rate. Applying the chain rule to Eq. (4):

@yðk þ 1Þ
@W ðkÞ

¼
Xm

j¼0

@yðk þ 1Þ
@uðk � jÞ

@uðk � jÞ
@W ðkÞ

¼
Xm

j¼0

hðjÞ
@uðk � jÞ
@W ðkÞ

:: ð5Þ

If the weights, W ðkÞ are made to adapt slowly enough with time, the gradients of u in Eq. (5) can
be approximately written as

@uðk � jÞ
@W ðkÞ

E
@uðk � jÞ
@W ðk � jÞ

¼
@f ðX ;W Þ

@W

����
X¼X ðk�jÞ;W¼W ðk�jÞ

: ð6Þ

The parameters of non-linear controller can be adjusted on-line using the update rule Eq. (4), with
gradients calculated in Eqs. (5) and (6).

3. Structure of the fuzzy neural network

In Section 2, a general feedforward non-linear controller is proposed. Due to the universal
approximation ability, the neural network can be selected to approximate the non-linear
controller f ðX ðkÞ;W Þ: The vector, W is the weights of the neural network. Several neural
networks, such as, multi-layer perceptrons (MLP), radial basis function (RBF) networks, and
fuzzy neural networks (FNN), etc can be selected. In this paper, the fuzzy neural network is used
as a non-linear filter. It can handle both numerical information and linguistic information, and
therefore, accelerates the adaptation process.
A fuzzy neural network structure is shown in Fig. 2. The system has five layers as proposed in

Refs. [12,15,16]. A model with two inputs and a single output is considered here for convenience.
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Fig. 2. Structure of five-layered fuzzy neural network.
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Nodes in layer 1 are input nodes that directly transmit input signals to the next layer. Layer 5 is
the output layer. Nodes in layer 2 are ‘‘term nodes, G’’ and they act as membership functions to
express the input fuzzy linguistic variables. A Gaussian function is adopted to present the
membership function, in which the mean value m and the variance s can be adjusted through the
learning process. The two fuzzy sets of the first and the second input variables consist of n1 and n2

linguistic terms, respectively. Each node in layer 3 is called a ‘‘rule node, R’’ and represents a
single fuzzy rule. In total, there are n1 	 n2 nodes in layer 3 to form a fuzzy rule base for two
linguistic input variables. Nodes in layer 4, N perform the normalization of firing strengths
coming from layer 3, and the input links are fully connected. The number of nodes in this layer is
equal to that of nodes in layer 3. In the following descriptions, the symbol v

ðkÞ
i denotes the ith

input of node in the kth layer, and the symbol aðkÞ denotes the output of node in the kth layer. To
give a clear understanding of the fuzzy neural network, the functions of the from layer 1 to layer 5
are defined as follows:

Layer 1: the nodes in this layer only transmit input values to the nodes of the next layer directly:

að1Þ ¼ v
ð1Þ
i : ð7Þ

Layer 2: the nodes in this layer represent Gaussian membership functions. The functions of the
nodes are defined as follows:

að2Þ ¼ exp �
ðvð2Þi � mijÞ

2

s2ij

( )
; ð8Þ

where mij and sij are the center and the width of the Gaussian membership function of jth term of
the ith input variable xðiÞ; respectively.

Layer 3: the nodes in this layer are rule nodes. The rule nodes perform a fuzzy AND operation
(or product inference) to calculate the firing strength

að3Þ ¼
Y

i

v
ð3Þ
i : ð9Þ

Layer 4: Nodes in layer 4 perform the normalization of firing strengths coming from layer 3

að4Þ ¼
v
ð4Þ
iP
i v

ð4Þ
i

: ð10Þ

Layer 5: This layer is the output layer. The link weights in this layer represent the singleton
constituents (Wi) of the output variable. The output node integrates all the normalized firing
strengths from layer 4 with the corresponding singleton constituents and act as a defuzzifier:

u ¼ að5Þ ¼
X

i

v
ð5Þ
i Wi: ð11Þ

In the next section, we shall discuss the learning algorithm of the fuzzy neural network and
apply the fuzzy neural network to control the non-linear ANC system.
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4. The adaptive control approach using a simplified fuzzy neural network

Generally, the learning algorithm of the fuzzy neural network consists of two major
components:

(1) Input/output space partitioning and construction of fuzzy rules. Several clustering algorithms
were developed to estimate the center and variance of each cluster for the construction of the
initial structure of the fuzzy neural network [12,15,16]. The input/output space can be
partitioned by a clustering algorithm or by a priori knowledge.

(2) Parameters identification. Parameters can be optimized by the simple gradient descent method
[12] or by the complex recursive least squares and Levenberg–Marquardt algorithms to
accelerate the learning convergence [16].

In this paper, the input space is partitioned by a priori knowledge. The gradient descent method
is utilized to adjust the parameters of the fuzzy neural network. Fig. 3 gives the block diagram of a
FNN-based ANC system. Compared to Fig. 1, the FNN controller is selected to replace the non-
linear controller. The FNN controller is a non-linear tap-delay filter, and the input of the FNN is
the reference xðkÞ and its delays are xðk � 1Þ;xðk � 2Þ;y;xðk � nÞ: We assume that the fuzzy set
for every input variable consists of N linguistic terms. There are a total of 2ðn þ 1ÞN parameters,
with ðn þ 1ÞN centers and ðn þ 1ÞN widths of the Gaussian membership function in layer 2. Since
the inputs have the same distributing function, we can set all the centers and widths of the
Gaussian membership functions to the same value, for different input variables:

mij ¼ m1j; i ¼ 1; 2;y; n; j ¼ 1; 2;y;N; ð12Þ

sij ¼ s1j; i ¼ 1; 2;y; n; j ¼ 1; 2;y;N: ð13Þ

Therefore, only 2N parameters are required in layer 2, and the parameters in layer 2 should be
greatly reduced when the input variables are large. The computational load can be reduced as
follows. According to Eqs. (8), (12) and (13), if the outputs in layer 2 for the first input variable
xðkÞ have been calculated, then the outputs in layer 2 for other input variables, xðk � iÞ; i ¼
1;y; n; are only the delay of the outputs for the first input variable. Fig. 4 shows the structure of
the simplified FNN (SFNN). The nodes labeled as D are delay nodes, whose outputs are the one
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Fig. 3. Block diagram of an FNN-based ANC system.
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period delay of the inputs. It can be found that only the current reference noise signal is used as
the input to the SFNN.
It is presumed that the input space is partitioned by a priori knowledge. Only the singleton

constituents (Wi) of the output variable are adaptively adjusted when the ANC system is running.
The rule of adaptive learning is stated as

W ðk þ 1Þ ¼ W ðkÞ � meðk þ 1Þ
Xm

j¼0

hðjÞ 
 Aðk � jÞ; ð14Þ

where AðkÞ is the vector which consists of the outputs of the layer 4.

5. The stability of control system

The discrete-type Lyapunov function can be given by

V ðkÞ ¼ 1
2
e2ðkÞ: ð15Þ

Due to the training process, the change of the Lyapunov function can be obtained by

DV ðkÞ ¼ Vðk þ 1Þ � VðkÞ ¼ 1
2
½e2ðk þ 1Þ � e2ðkÞ�: ð16Þ

The error difference resulting from the learning can be represented by

eðk þ 1Þ ¼ eðkÞ þ DeðkÞ ¼ eðkÞ þ
@eðkÞ
@W ðkÞ

� �T
DW ðkÞ: ð17Þ

According to the update rule of the weights, we can obtain

DW ðkÞ ¼ �meðkÞ
Xn

j¼0

hðjÞ
@uðk � jÞ
@W ðkÞ

¼ �meðkÞHAðkÞ; ð18Þ

where

H ¼ ½hð0Þhð1ÞyhðmÞ�; AðkÞ ¼ AðkÞAðk � 1ÞyAðk � mÞ½ �T: ð19Þ
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A general stability theorem can be presented as follows:

Theorem. Let m be the learning rate for the weights of the SFNN. We define g0 ¼ jjH jj; where jjdjj
is the norm of matrix or vector. If the learning rate m is chosen as 0omo2=ðg0Þ

2; then the local
stability of closed loop control system based on neural network is guaranteed.

Proof. Define QðkÞ ¼ HAðkÞ; According to Eqs. (16)–(19), DV ðkÞ can be represented as

DVðkÞ ¼DeðkÞ½2eðkÞ þ DeðkÞ�=2 ¼ �
1

2

@eðkÞ
@W ðkÞ

� �T
meðkÞHAðkÞ

	 2eðkÞ �
@eðkÞ
@W ðkÞ

� �T
meðkÞHAðkÞ

( )
¼ �

1

2
meðkÞjjQðkÞjj2

	 f2eðkÞ � eðkÞjjQðkÞjj2g ¼ �
1

2
me2ðkÞjjQðkÞjj2f2� mjjQðkÞjj2g ¼ �

1

2
le2ðkÞ: ð20Þ

Since jjQðkÞjjpjjH jj jjAðkÞjjpg0; if the learning rate m is chosen as 0omo2=ðg0Þ
2; then

0omo2=jjQðkÞjj2; which implies that l ¼ mjjQðkÞjj2f2� mjjQðkÞjj2g > 0 and DV ðkÞo0: Therefore,
the control system is locally stable. &

6. Simulation results

In this section, some illustrative results are presented to compare the performances of the two
different systems: the neural networks (NN) control and the simplified fuzzy neural networks
control (SFNN). The sampling frequency used in this simulation is 1000Hz. The disturbance
signal is chosen to be a 50Hz pure tone signal plus an additional Gaussian white noise signal. The
number of neurons in NN is 4–4–1. There is one input node and one output node in the SFNN.
The input space is partitioned to 8 fuzzy sets, and the centers and widths of Gaussian membership
functions are selected as

m ¼ ½�0:65; � 5=8; � 3=8; � 1=8; 1=8; 3=8; 5=8; 0:65�;

r ¼ ½�20; 0:14; 0:14; 0:14; 0:14; 0:14; 0:14; 20�:

There are 4 input variables in layer 1, and they are realized by delaying the outputs of layer 2.
Only the W vector is adjusted online, and the centers and widths of Gaussian membership
functions remain fixed when the ANC system is running.

Case 1: An active noise control example with non-linear primary acoustic path is selected to
illustrate the effectiveness of the SFNN by comparing with the results given by NN. The learning
rate for W in the SFNN is chosen as m ¼ 1:8; and the learning rate for the weights in the NN is
chosen as m ¼ 0:04: The acoustic paths are chosen as follows:
The primary acoustic path from noise source to error microphone is

dðk þ 1Þ ¼ 0:8xðk � 2Þ þ 0:6xðk � 3Þ � 0:2xðk � 4Þ � 0:5xðk � 5Þ

� 0:1xðk � 6Þ þ 0:4xðk � 7Þ � 0:05xðk � 8Þ þ 0:9x2ðk � 2Þ:
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The secondary acoustic path from secondary source to error microphone is

yðk þ 1Þ ¼ uðk � 1Þ þ 0:6uðk2Þ þ 0:1uðk � 3Þ � 0:1uðk � 4Þ � 0:005uðk � 5Þ:

Fig. 5 shows the mean square error (MSE) in error microphone versus the number of iterations.
The result of the NN-based ANC system is shown in the solid thin line, and the result of the
SFNN-based ANC system is shown in solid thick line. The MSE of the SFNN control system is
approximately 5 dB below that of the NN control system. The convergence rate of the SFNN is
faster than that of the NN.
Fig. 6 gives the simulating results of the canceling errors between 2000 and 3000 iterations in the

frequency domain. The result of the NN is shown in the solid thin line, the result of the SFNN is
shown in solid thick line, and the dashed line shows the sound pressure level of the disturbance
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Fig. 5. Performance comparison, the thin line for NN controller, and the thick line for SFNN controller.

Fig. 6. Power spectrum of active noise canceling errors. The thin line for NN controller, the thick line for SFNN and

the dished line for ANC turn off.
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signal when the ANC system turns off. It can be seen that using both control methods (NN and
SFNN), the 50Hz tone can be reduced by about 25 dB, and broadband noise can be reduced by
about 10 dB. In Fig. 6, there is a 100Hz peak in the noise spectrum, which is produced by the
square non-linear in the primary acoustic path. It can be reduced by 15 dB using the SFNN
control, but it can only be reduced by 5 dB using the NN control. For non-linear control problem,
the SFNN control is clearly superior to the NN control.
Fig. 7 gives another simulation results of the canceling errors in the frequency domain. The

result of the NN control is calculated by the data between 8000 and 9000 iterations. Other results
are similar to that shown in Fig. 6. From the results shown in Figs. 5–7, it can be seen that both
methods (NN and SFNN), can reduce the broadband noise and the non-linear noise. But, to
achieve the similar canceling error, the number of iterations in the NN control is three times the
number of iterations in the SFNN control.
To show the advantage of proposed method, another two simulation examples are given. The

primary acoustic paths are non-linear in both simulation examples. The secondary path with
minimum phase is selected in one model, and the secondary path with non-minimum phase is
selected in the other model [14].

Case 2: Simulations are given for the secondary path with minimum phase. The learning rate
for W in the SFNN is chosen as m ¼ 1:0; and the learning rate for the weights in the NN is chosen
as m ¼ 0:08: The acoustic paths are chosen as follows:
The primary acoustic path is selected as

dðk þ 1Þ ¼ xðk � 4Þ � 0:3xðk � 5Þ þ 0:2xðk � 6Þ þ 0:9x2ðk � 4Þ:

The secondary acoustic path from secondary source to error microphone is

yðk þ 1Þ ¼ uðk � 1Þ þ 0:5uðk � 2Þ:

Figs. 8–10 show the simulating results of the NN control and the SFNN control. The
performances in these figures are similar to that reported in case 1. From the results shown in
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Fig. 7. Power spectrum of active noise canceling errors. The thin line for NN controller (after 8000 iterations), and the

thick line for SFNN controller (after 2000 iterations), and the dished line for ANC turn off.
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Figs. 8–10, it can be seen that the convergence of the SFNN control is superior to that of the NN
control for the secondary path with minimum phase.

Case 3: simulations are given for the secondary path with non-minimum phase. The learning
rate for W in the SFNN is chosen as m ¼ 1:0; and the learning rate for the weights in the NN is
chosen as m ¼ 0:06: The acoustic paths are chosen as follows
The primary acoustic path is selected as

dðk þ 1Þ ¼ xðk � 4Þ � 0:3xðk � 5Þ þ 0:2xðk � 6Þ þ 0:9x2ðk � 4Þ:

The secondary acoustic path from secondary source to error microphone is

yðk þ 1Þ ¼ uðk � 1Þ þ 1:5uðk � 2Þ � uðk � 3Þ:
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Fig. 9. Power spectrum of active noise canceling errors. The thin line for NN controller, the thick line for SFNN and

the dished line for ANC turn off.

Fig. 8. Performance comparison, the thin line for NN controller, and the thick line for SFNN controller.
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Figs. 11–13 show the simulating results of the NN control and the SFNN control. Comparing
with case 2, it can be seen that the performances of the ANC system have been degraded by the
secondary path with non-minimum phase. Contrast to the SFNN based ANC system, the
performances of the NN based ANC system are obviously degraded. From the results shown in
Figs. 11–13, it can be seen that the convergence of the SFNN control is superior to that of the NN
control for secondary path with non-minimum phase.

7. Conclusions

The non-linear active noise control (ANC) is studied. A simplified fuzzy neural network
(SFNN) is proposed to solve the non-linear effect in the primary acoustic path of the ANC
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Fig. 11. Performance comparison, the thin line for NN controller, and the thick line for SFNN controller.

Fig. 10. Power spectrum of active noise canceling errors. The thin line for NN controller (after 8000 iterations), and the

thick line for SFNN controller (after 2000 iterations), and the dished line for ANC turn off.
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system. Using the SFNN, only one input is required, and fewer parameters are utilized. Since the
SFNN is a local approximated neural network, the rate convergence of the SFNN is faster than
that of the global approximated neural network. An on-line learning algorithm based on the error
gradient descent method is proposed, and the local stability of closed loop system is proven via the
discrete Lyapunov function. Some simulation results are given to compare the proposed control
method with NN based method. The results show that the adaptive active noise control method
based on the SFNN is very effective to the non-linear noise control, and the convergence of the
SFNN control is superior to that of the NN control.
Our current work is focusing on designing an ANC system based on recurrent fuzzy neural

network, considering online modelling techniques to meet the requirement and constraints of
practical applications.
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Fig. 13. Power spectrum of active noise canceling errors. The thin line for NN controller (after 8000 iterations), and the

thick line for SFNN controller (after 2000 iterations), and the dished line for ANC turn off.

Fig. 12. Power spectrum of active noise canceling errors. The thin line for NN controller, the thick line for SFNN and

the dished line for ANC turn off.
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